LXD pod commissioning data

Bill Wear

on April 15, 2020

Tags:

MAAS is built to manage machines, including the operating systems on those machines. Enlistment and commissioning are features that make it easier to start managing a machine – as long as that machine has been configured to netboot. Enlistment enables users to simply connect a machine, configure the firmware properly, and power it on so that MAAS can find it and add it.

Enlistment happens when MAAS starts; it reaches out on connected subnets to locate any nodes – that is, devices and machines – that reside on those subnets. MAAS finds a machine that’s configured to netboot (e.g., via PXE), boots that machine into Ubuntu, and then sends cloud-init user data which runs standard (i.e., built-in) commissioning scripts. The machine actually adds itself over the MAAS API, and then requests permission to send commissioning data.

Since MAAS doesn’t know whether you might intend to actually include these discovered machines in your cloud configuration, it won’t automatically take them over, but it will read them to get an idea how they’re set up. MAAS then presents these machines to you with a MAAS state of “New.” This allows you to examine them and decide whether or not you want MAAS to manage them.

The commissioning sequence

When a machine boots, MAAS first instructs it to run cloud-init to set up SSH keys (during commissioning only), set up NTP, and execute a script that runs other commissioning scripts. Currently, the sequence of MAAS-provided commissioning scripts proceeds like this:

  • 00-maas-00-support-info: MAAS gathers information that helps to identify and characterize the machine for debugging purposes, such as the kernel, versioning of various components, etc.
  • 00-maas-01-lshw: this script pulls system BIOS and vendor info, and generates user-defined tags for later use.
  • 00-maas-02-virtuality: this script checks whether the machine being commissioning is a virtual machine, which may affect how MAAS interacts with it.
  • 00-maas-03-install-lldpd: this script installs the link layer discovery protocol (LLDP) daemon, which will later capture networking information about the machine. The lldpd needs to be installed early because it requires about a 60-second delay before running.
  • 00-maas-04-list-modaliases: this script figures out what hardware modules are loaded, providing a way to autorun certain scripts based on which modules are loaded.
  • 00-maas-05-dhcp-unconfigured-ifaces: MAAS will want to know all the ways the machine is connected to the network. Only PXE comes online during boot; this script brings all the other networks online so they can be recognized.
  • 00-maas-06-get-fruid-api-data: this script gathers information for the Facebook wedge power type.
  • 00-maas-08-serial-ports: this script lists what serial ports are available on the machine.
  • 40-maas-01-network-interfaces: this script is just used to get the IP address, which can then be associated with a VLAN/subnet.
  • 50-maas-01-commissioning: this script is the main MAAS tool, gathering information on machine resources, such as storage, network devices, CPU, RAM, etc. We currently pull this data using lxd: We use a Go binary built from lxd source that just contains the minimum source to gather the resource information we need.
  • 99-maas-01-capture-lldp: this script gathers LLDP network information to be presented on the logs page; this data is not used by MAAS at all.
  • 99-maas-05-kernel-cmdline: this script is used to update the boot devices; it double-checks that the right boot interface is selected.

Commissioning runs the same dozen or so scripts as enlistment, gathering all the same information, but with some additional caveats:

  • Commissioning also runs user-supplied commissioning scripts, if present. Be aware that these scripts run as root, and thus can execute any system command you specify.
  • Commissioning also runs test scripts that are not run during enlistment.

In both enlistment and commissioning, MAAS uses either the MAC address or the UUID to identify machines. Currently, because some machine types encountered by MAAS do not use unique MAC addresses, we are trending toward using the UUID.

Newsletter signup

Select topics you’re
interested in

In submitting this form, I confirm that I have read and agree to Canonical’s Privacy Notice and Privacy Policy.

Related posts

We are changing the way you build snaps from GitHub repos

On the 11th March 2020 we introduced a new process for building a snap using GitHub repos to snapcraft.io. Here is all you need to know about this update....

GNOME 3.34 snapcraft extension

We constantly strive to empower developers. Part of that aim extends to making development easier, for example improving build tools and documentation. As an...

An adventure through the Snap Store

An application store with a large number of entries is a double-edged sword. It’s often a good sign of a vibrant, thriving community of software creators,...